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In this paper a theory is formulated that predicts velocity and spatial correla- 
tions between occupation numbers that occur in lattice gas automata violating 
semi-detailed balance. Starting from a coupled BBGKY hierarchy for the 
n-particle distribution functions, cluster expansion techniques are used to derive 
approximate kinetic equations. In zeroth approximation the standard nonlinear 
Boltzmann equation is obtained; the next approximation yields the ring kinetic 
equation, similar to that for hard-sphere systems, describing the time evolution 
of pair correlations. The ring equation is solved to determine the (nonvanishing) 
pair correlation functions in equilibrium for two models that violate semi- 
detailed balance. One is a model of interacting random walkers on a line, the 
other one is a two-dimensional fluid-type model on a triangular lattice. The 
numerical predictions agree very well with computer simulations. 

KEY WORDS: Non-Gibbs states; lack of detailed balance; static pair 
correlations; lattice gas automata; BBGKY hierarchy. 

1. I N T R O D U C T I O N  

The mos t  i m p o r t a n t  genera l iza t ion  of B o l t z m a n n ' s  kinet ic  e q u a t i o n  is 
the so-called r ing equa t ion ,  (~ which accoun t s  for corre la ted  col l is ion 
sequences.  In  the kinet ic  theory  of classical fluids ~2'3~ one  expands  the two-,  
three-, etc., part icle  d i s t r i bu t ion  funct ions  or  t ime cor re la t ion  funct ions  
systematical ly  in cluster  or  cor re la t ion  func t ions  by neglect ing all higher-  
o rder  cor re la t ions  except pair  correla t ions .  In  this m a n n e r  one  ob ta ins  the 
n o n l i n e a r  general ized B o l t z m a n n  e q u a t i o n  for the s ingle-part icle  d i s t r ibu-  
t ion func t ion  and  the r ing  e q u a t i o n  for the pai r  cor re la t ion  funct ion.  In  
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the context of lattice gas automata (LGA) it was first used in 1991 by 
Kirkpatrick and Ernst t4~ following the standard methods for continuous 
systems. 

The kinetic theory studies of the 1960s t~-3~ showed that these techni- 
ques can be applied equally well to the distribution functions and time 
correlation functions; they can be applied directly to the Liouville operators, 
or to the BBGKY hierarchy c21 satisfied by distribution functions or time 
correlation functions. 

These standard methods of kinetic theory have been used to obtain the 
ring kinetic theory for time correlation functions in LGA, either for fluid-type 
models ~4'51 or for purely diffusive models. ~6-8) In particular, ring 
contributions to transport coefficients have been evaluated numerically for 
FHP models by Brito and Ernst ~9) and compared with computer simulations 
by Gerits et aU ~~ 3 Another successful application of ring kinetic theory to 
LGA is the derivation of mode coupling theory and long-time tails. ~4J 

Very recently, 4 Boghosian and Taylor c~ ~ applied a similar method of 
cluster expansions to the BBGKY hierarchy for LGA by linearizing the 
hierarchy around the known Gibbsian equilibrium state. These authors 
characterized the formal structure of the n th-order collision term in the 
generalized Boltzmann equation. Their work should be considered as the 
LGA analog of the early studies by Cohen ~2) and Green and Picirelli II-') for 
continuous fluids. 

The theories discussed above refer to LGA that obey the so-called 
semi-detailed balance condition, and consequently approach for long times 
a Gibbsian equilibrium state, where all distribution functions are known. 
The method of ref. 11 also applies to models that violate semi-detailed 
balance only weakly, so that equilibrium properties are not affected, but 
only nonequilibrium properties such as transport coefficients. Most existing 
LGA fluids without detailed balance are not of this type. ct3-16~ 

The calculation of the correlation functions in equilibrium for models 
that strongly violate detailed balance is the main goal of this paper. We 
apply cluster expansion techniques to the BBGKY hierarchy of multipar- 
ticle distribution functions. The resulting nonlinear generalized Boltzzmann 
equation and ring kinetic equation can be solved to obtain the single- 
particle and pair distribution functions in the unknown non-Gibbsian 
equilibrium state. 

We describe the problems of interest in the current paper in somewhat 
more detail. In the theory of lattice gas automata (LGA) the Gibbs 
distribution is known to be the unique equilibrium distribution if the 

Ref. 10 compares the theory of ref. 5 with simulations of 2D triangular LGA. 
4 A preprint only became available at the time when the present research was being submitted. 
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dynamics satisfy the so-called semi-detailed balance 117) or Stueckelberg 1~8 
condition. The Gibbs distribution depends on the phase space variables 
only through globally conserved quantities, such as the total number of 
particles N, the total momentum P, or (for thermal models) the total 
energy H. If the collision rules are strictly local, involving particles on the 
same node only, then the Gibbs equilibrium state is completely factorized, 
i.e., the occupations of velocity channels at the same or at different nodes 
are completely uncorrelated. 

However, in LGA that violate the condition of semi-detailed balance 
equal-time correlations are know to exist in equilibrium between occupa- 
tion numbers of different velocity channels on the same or on different 
nodes .  (13'16"19~ The existence of such equilibrium correlations prevents the 
equilibrium distribution from being the Gibbs distribution, and therefore 
standard equilibrium statistical mechanics does not apply to LGA that 
violate (semi-) detailed balance. In the literature a quantitative or quali- 
tative understanding of the structure of the equilibrium distribution for 
such models is entirely lacking. Fundamental questions are: Is there a 
unique equilibrium state, or can there be several stationary states? To what 
extent does the final state depend on the initial state and on the details 
of the collision rules? How does the system approach the correlated equi- 
librium state? How can one calculate transport properties and time correla- 
tion functions? These questions are partly answered in the present paper. 

The organization of the paper is as follows. In Section 2 we derive the 
first two equations of a coupled hierarchy for the joint distribution func- 
tions, and we introduce a cluster expansion around mean-field theory that 
leads to a closure of the hierarchy at the level of two-point correlation 
functions. In Section 3 the coupled kinetic equations are specialized to 
spatially uniform stationary states, and equations are constructed for the 
stationary values of the single-particle distribution function and the pair 
correlation function; an iterative scheme is discussed for evaluating these 
equations numerically. To establish the accuracy of the theory, in Section 5 
we apply the theory to a model of interacting random walkers on a line 
and to a fluid-type model on the triangular lattice. We compare the 
theoretical predictions with detailed computer simulations performed for 
both models. We end with some conclusions and remarks about future 
developments in Section 6. 

2. KINETIC THEORY 

2.1. Microdynamic Equation 

We consider a lattice gas automaton defined on a regular d-dimensional 
lattice ~90 with periodic boundary conditions, containing V= L d nodes. On 
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each node r e &a there exist b allowed velocity channels ct,  ez ..... cb, corre- 
sponding to the nearest-neighbor lattice vectors; there may also be rest 
particles with Icil =0 .  The system evolves at discrete time steps t = 0 ,  1 ..... 
The microscopic configuration of the system at time t is given in terms of 
occupation numbers n~(r, t) = {0, 1 }, denoting the absence or presence of a 
particle in velocity channel (r, c~). The state of node r is denoted by 
n(r, t ) =  {n~(r, t); i =  1, 2,..., b}. 

One time step in the evolution involves an instantaneous collision step 
which transforms a precollision state n(r, t) into a postcollision state 
n*(r, t) on all nodes r independently. It is followed by a propagation step, 

n i ( r+c i ,  t +  1)= n*(r, t) (2.1) 

during which a particle at node r is moved to the nearest-neighbor node 
r +c~ in the direction of its velocity c,. The collision step is specified in 
terms of a matrix of transition probabilities A ~  from a precollision or 
in-state s = {sl ,  s2 ..... Sb} to a postcollision or out-state ~ = {al ,  a2 ..... ab}. 
The matrix As, satisfies the normalization condition 

As, = 1 (2.2) 
o" 

There are additional constraints imposed on the transition matrix A~.~ due 
to the presence of local conservation laws, which are most easily expressed 

1 2 in terms of the collisional invariants at { 1, c~, _~c i .... }, as 

aini(r, t) = ~" ain* (r, t) (2.3) 
i i 

The local conservation laws imply global conservation of the total quantities 
~ =  {N, P, H,...} =-Zr, i a~ni(r, t). In diffusive LGA only the total number 
of particles N is conserved; in fluid-type LGA the total momentum P is 
conserved in addition. There also exist thermal models where the total 
energy H is conserved. Furthermore, the majority of LGA have additional 
(spurious) global invariants, 12~ which are mostly "staggered" in space and 
time. They can be included in the present discussion in a similar manner. 

2.2. S e m i - D e t a i l e d  Balance 

Much is known about the properties of LGA that satisfy the condition 
of semi-detailed balance with respect to the Gibbs distribution, 

Z As~ = I (2.4) 
s 
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also known as the Stueckelberg condition, t~s) or the stronger condition of 
detailed balance with respect to the Gibbs  distribution, 

A ~ = A ~ ,  (2.5) 

The latter implies the semi-detailed balance condition (2.4) on account  of 
the normalizat ion condition (2.2). If condition (2.4) is satisfied, then the 
equilibrium distribution for the model is the Gibbs  distribution, which only 
depends on the globally conserved quantities y,y.s 

A comment  on the difference between semi-detailed balance and 
detailed balance is appropriate.  We group all states s(r) that can be 
mapped  into one another  by lattice symmetries (rotations, reflections) into 
the same equivalence class. ~2~'~4~ Next, suppose that for any given in-state 
s(r), transitions are allowed to out-states ~r(r) belonging to at most  M dif- 
ferent equivalence classes. As long as M ~< 2 there is no distinction between 
semi-detailed balance and detailed balance. Almost all L G A  used in the 
literature have M~<2. Notable  exceptions are the F C H C  models. ~5) 

In what follows, no condition apar t  from normalizat ion will be 
imposed on the transition matrix As,. Of  course, all the results that  will be 
obtained in the remainder  of this paper  will hold for L G A  that  satisfy semi- 
detailed balance as well, being just a special case of the more general class 
of LGA violating semi-detailed balance. 

2.3. H ie ra rchy  Equat ions 

To construct  the equations of mot ion for the occupat ion numbers  we 
observe that the occupat ion numbers  n(r, t) and n*(r, t) are related 
through the transition matrix As, as 

n*(r, t) = ~ aif l~6(s ,  n(r, t)) (2.6) 
o-s  

where 6(s, n ) =  VIi 6(sj, nj) is a product  of b Kronecker  delta functions. 
Similarly, for the product  of two occupat ion numbers  on the same node we 
have 

n*(r, t) n*(r, t) = ~ aiajfts~f(s, n(r, t)) (2.7) 
o-s  

5 The semi-detailed balance and detailed balance conditions with respect to an arbitrary phase 
space distribution function Po(s) have respectively the forms Z~Po(s)A~,=Po(a ) and 
Po(s) A,,=A,.~Po(a). The phase space distribution in the Gibbs state depends on the 
variables s(r) only through locally conserved quantities. Consequently Po(s) = Po(tr) and the 
(semi-) detailed balance conditions reduce to the equations in the text. 
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For every node r and every time t the Boolean realization/i , , ,  = .4,,,(r, t) = 
{0, 1 } of the (s --, ~r) transition is drawn from an (r, t)-independent proba- 
bility distribution with expectation value ( ( . 4 , , , ) )=A , , ,  

The hierarchy equations describe the time dependence of the distri- 
bution functions, i.e., the expectation value of products of occupation 
numbers. The single-particle and two-particle distribution functions, 

f,.(r, t )=  (ni(r  , t ) )  
(2.8) 

f,21, ' t ) = ( n i ( r , t ) n y ( r ' , t ) )  if, r ,  

are defined as averages ( - . - )  over an arbitrary distribution of initial 
occupation numbers, {n(r, 0)}. Note that f 'ffl(r, r, t )=f , . ( r ,  t). 

We now introduce the single-node and two-node distribution functions, 

p(s, r, t)= ( &(s, n(r, t )))  
(2.9) 

p12'(s, r, s', r', t )= ( &(s, n(r, t)) 6(s', n(r', t ) ) )  

By taking the average of (2.6) over an arbitrary distribution of initial states 
{n~(r, 0) } as well as over the .,i distribution of realizations of the transition 
matrix and using (2.1), we obtain 

f , ( r  + ci, t +  1 )=  (n*( r ,  t ) )  

= Z ~,.4,, p(s, r, t) 

=L ( r ,  t)+ ~ 6e,A,~,p(s, r, t) (2.10) 
so" 

where we have used the relation 8 a i =  a i - f ~  and the normalization (2.2). 
To obtain an analogous equation for the pair distribution function we must 
distinguish between the cases r = r' and r ~- r'. When r r r' the collisions for 
channels (r, c~) and (r', cj) are independent and given by (2.6). When r = r', 
however, we must use (2.7). The combined result can be written as 

12)  r' f~i ( r+e~,  +e j ,  t + l )  

t = (n*(r ,  t) nj ( r ,  t ) )  

= [1 --&(r, r ' ) ]  tr i tr iA,~A,,~,pt2J(s,r ,s ,r , t  
os .  a ' s '  

tr.~. 
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Equations (2.10) and (2.11) constitute respectively the first two equations 
of an open hierarchy of coupled equations for the distribution functions, 
similar to the BBGKY hierarchy for continuous systems. It is straight- 
forward to extend this procedure to construct the hierarchy equations for 
fc~l with 1/> 3, although the complexity increases rapidly. In this paper the 
first two equations of the BBGKY hierarchy suffice for our purpose. 

The node distribution functions in (2.11) are related to the /-particle 
distribution functions in a simple manner. This follows from the following 
identity, valid for delta functions 6(s, n) with binary variables as their 
arguments: 

6(s, n) =- 1-[ 6(sj, nj) = 1-[ n~J(1 -n j ) ' - "~  (2.12) 
J J 

which can be verified directly. As sj takes only values 0 or 1, the right-hand 
side is a sum of products of at most b occupation numbers. The average 
of(2.12), p(s, r, t), is therefore a linear combination of/-particle distribu- 
tion functions f t~  with l = 1, 2 ..... b, all referring to the same node, and with 
coefficients that are either + 1 or - 1. Similarly pl-,~ is a linear combination 
of distribution functions. 

To understand the differences between the BBGKY hierarchy for dis- 
crete LGA and continuous systems we note the following. In continuous 
systems usually only two-body interactions (additive forces) are con- 
sidered; consequently the right-hand side of the lth hierarchy equation 
contains only ( /+  1)-particle distribution functions. If one would include 
s-body interactions ( s=2 ,  3, 4 ..... b) the lth hierarchy equation would 
contain ( l+  b -  1 )-particle distribution functions. In the LGA case b-body 
interactions simultaneously occur on each node r, where b is the number of 
velocity channels at a node. Therefore the first hierarchy equation already 
involves up to b-particle distribution functions; the second equation even 
involves up to 2b-particle functions. 

2.4. Cluster Expansion 

An approximate closure of the hierarchy equations can be obtained by 
making a cluster expansion in terms of two-, three-, etc., point correlation 
functions and retaining correlation functions up to a certain order while 
neglecting the higher-order ones. This procedure leads to approximate 
kinetic equationsJ 2z~ 

The cluster functions G are defined through the so-called Ursell 
expansion, 
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fl2)tr r') =f , . (r)f j(r ' )  + Gi/(r, r') /j I -~  

f (3 ) ( r ,  ' r " )  0t r ,  = f, .(r)fj(r ')ft(r") + f~(r) Gi/(r, r") + f j(r ' )  G,(r, r") 

+ ft(r") G,7(r, r') + Gu/(r, r', r") (2.13) 

etc., where in general all channels (r, c~), (r', cj), and (r", el) are different. 
Solution of the recursion relations yields the pair and triplet functions in 
terms of the f~). The pair and triplet cluster functions can conveniently be 
written in terms of fluctuations, 

6n~(r, t)= ni(r, t ) - f / ( r ,  t) (2.14) 

For the two-point function we have 

Go.(r, r,  t ) -  ~2~ , , , ' - f o  (r, r ,  t ) - f~( r ,  t ) f j ( r ,  t )=  (6ni(r, t) 6nj(r, t)) (2.15) 

and similarly 

Gijl(r, r', r", t) = (6n;(r, t) 6nj(r', t) 6nl(r", t)) 

The expressions are more complicated for four-point and higher-order 
correlation functions. It is important to note that the diagonal elements for 
(r, e ; )=  (r', ej) are completely determined by f~(r, t), due to the Boolean 
character ofn~(r, t), 

Gii(r, r, t)= ((6ni(r, 0)  2) = f,(r, t ) [ l  - f / ( r ,  t)] - gi(r, t) (2.16) 

To perform the cluster expansion of the hierarchy equations the cluster 
expansion of the node distribution functions p(s) and p~2~(s, s') is needed. 
In Appendix A the expansion up to terms linear in the pair correlations is 
worked out detail. It amounts to obtaining approximate expressions for p 
and p~2) in terms o f f  and G. For the single-node distribution function the 
result is [6Sk=Sk--fk as in (2.14)] 

{ k~< 6sk(r't) 6 s ' ( r ' t )Gk , ( r , r , t )+ . . . } (2 .17 )  p (s , r , t )=F(s , r , t )  1 + .  / gk(r , t )g/( r , t )  

Here F(s, r, t) is the completely factorized single-note distribution function, 

F(s, r, t )=  I-I [fj(r,  t)] s, [1 - f j ( r ,  t)3'-.,7 (2.18) 
J 

In a similar way we can expand the two-node distribution function. 
Substitution of these expansions in the hierarchy equations yields coupled 
approximate equations of motion for f~(r, t) and Go(r, r', t). For more 
details we refer to Appendix A. 
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2.5. Nonlinear Boltzmann Equation 

The kinetic equation in zeroth approximation is obtained by neglecting 
Gk~ in (2.17), or equivalently by replacing the distribution functions 
p(s, r, t) in (2.10) by the factorized F(s, r, t). In that case the first hierarchy 
equation reduces to the nonlinear Boltzmann equation, 

f~(r + ci, t +  1)--f~(r, t )=  ~l"~ t)) (2.19) 

with the nonlinear collision operator g21~'~ given by 

(21"~ = ~" 6aiA~F(s) = ~ ( o i -  s,) A,.~F(s) (2.20) 
st7 .vr 

The second equality follows from (2.2) and (2.18). This is the standard form 
of the nonlinear lattice Boltzmann approximation (mean-field theory) for 
lattice gas automata. ~*v~ The way in which this equation has been derived 
closely parallels the derivation of the nonlinear Boltzmann equation for 
hard spheres from the corresponding BBGKY hierarchy, where one replaces 
the pair distribution function f,2~ in the first hierarchy equation by 
a product of single-particle distribution functions, or equivalently, one 
neglects the two-point correlation function. *zz~ 

2.6. Generalized Boltzmann and Ring Equations 

In first approximation (2.17) is inserted into (2.10), where the terms 
linear in Gkl are included in the kinetic equations, but higher-order terms 
are neglected. The nonlinear Boltzmann equation (2.19) is extended with a 
term linear in G, yielding the generalized Boltzmann equation, 

f i ( r+c i ,  t ) - f i ( r ,  t)=g211"~ t ) )+  ~ f2i, k/~,,2,(f(r, t)) Gkl(r, r, t) (2.21) 
k < /  

The explicit form of the coefficients/2~'21 = 02(21"OI/Ofk Of 1 is given in (A.5). i, k l  

Equation (2.21) describes corrections to the mean-field equation (2.19) 
caused by the correlations Gk~ that are built up by sequences of correlated 
ring collisions between the particles. These correlations can be calculated 
from the lowest-order approximation to the second hierarchy equation (see 
Appendix A). The result is the so-called ring kinetic equation for the pair 
correlation function, 

G0(r + c  . r' +cj ,  t +  1) 

= ~. O00.kl(f,f' ) Gkt(r, r', t) + 6(r, r') B,y(r, t) (2.22) 
k . l  
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where oJ is the two-particle collision operator, given by 

og0. k,(f , f ' )  = {6ik+f21.~' l ) ( f (r ,  t ) ) } {6 j ,+f2~ . ] ' l J ( f ( r  ', t))} (2.23) 

The linearized Boltzmann operator, 12,~!'~)(f)=Ot21L~ is given 
explicitly in (A.5). In particular, we have 

(~S k 
~l, 1~ _ ~., 6a iA.,.~F(s) _ _  (2.24) 6 i  k .dr- ~"~ ik - -  

sa gk 

The on-node source term B~j(r, t) in (2.22) is a function of both f,.(r, t) and 
Go.(r, r, t). It essentially contains the on-node postcollision correlations that 
are created by the collision step and originate from the last term on the 
right-hand side of(2.11). Furthermore, B,:i(r, t) contains the term with 
6(r, r') on the second line of (2.11). The detailed expressions for these terms 
after cluster expansion are given in (A.11) and (A.16) of Appendix A. 

The structure of the kinetic equations is essentially the same as for 
continuous fluids. Together, the generalized Boltzmann equation (2.21) and 
the ring equation (2.22) form a closed set of equations for the functions 
.~(r, t) and G~i(r, r', t). These approximate kinetic equations still obey the 
global (standard and spurious) conservation laws. This is expressed by the 
orthogonal i ty  condition with respect to the collisional invariants ai, i.e., 

a , a j B  o. = 0 (2.25) 
/ j  

as follows from the definitions (A.11) and (A.16). 
Equations (2.21) and (2.22) have been derived under the assumption 

that triplet- and higher-order correlations as well as products of pair 
correlations can be neglected. Only terms that are linear in the pair correla- 
tion occur. In principle more terms might be included in (2.21) and (2.22). 
The justification of our assumptions can only be given a posteriori  by com- 
paring the theoretical predictions with results from computer simulations. 
This will be done in the remainder of this paper, for the special case of 
equilibrium correlations. 

3. EQUIL IBRIUM CORRELATIONS 

3.1. Ring Operator 

The purpose of the present section is to obtain stationary solutions to 
the kinetic equations for the distribution and correlation functions under 
the assumption that a spatial ly  uni form equil ibrium state  exists. The single- 
particle distribution function will be denoted by f~(r, or)=f , ,  and the pair 
correlations by Gij(r, r', ~ ) = ~ j ( r - r ' ) .  
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For a spatially homogeneous equilibrium state, the kinetic equa- 
tion (2.21) for/,- simplifies to 

(I,0) f2i ( f ) +  ~ "~176 r~ 'cgk,(0) = 0 ; . k l  t J ,  (3.1) 
k < l  

The ring equation (2.22) for the pair correlations also simplifies. The source 
term B o in (2.22) is now independent of r and reduces to 

B 0 = fq* (0) - Y' OgU.ktfgk~(0) (3.2) 
k,I 

with 

ol-'.'-~r r ffk./(0) (3.3) 
k < l  

* - -  * oo) represents the on-node postcollision correlations Here fg/j (0) - G o. (r, r, 
in the stationary state. It is defined through (2.15) with 6ni in (2.14) replaced 
by the postcollision fluctuation 6n* = n * - f * .  The expressions (3.2) and 
(3.3) can be derived from (A.11) and (A.16), where the contribution B,~? I 
in (A.11) vanishes in equilibrium, at least up to linear order in the pair 
correlations, due to (3.1), and the g2 coefficients are defined in (A.17). 

In (3.3) the quantity 

~2~/12"~ ~ (6ai6a  j -- ~si~sj) As~F(s)  (3.4) 

accounts for the correlations created by a single collision from the com- 
pletely factorized precollision state F(s) in (2.18). It represents the dominant 
contribution to the on-node postcollision correlations. The next two terms 
represent the effect of existing precollision correlations. This second con- 
tribution is in general rather small. 

The quantity f21~ "~ was calculated earlier in ref. 16 and compared with 
on-node postcollision correlations measured in computer simulations. The 
data agreed within 10% for a triangular lattice gas violating semi-detailed 
balance. The present theory enables one to calculate the precollision 
correlations, which are built up by collective mechanisms, acting on large 
spatial and temporal scales. The ring operator (3.12) propagates the two- 
particle correlations to other nodes through uncorrelated single-particle 
motion (Boltzmann propagators) and recollects this information on a 
single node [represented by the q integration in (3.12)-I. 

Further simplification is possible by introducing the Fourier transform, 

~j(q)= ~ e-iqr~ij(r ) (3.5) 
r 
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so that (2.22) becomes 

~ j ( q ) -  s,j(q) ~ co~.,t~)'(q)= s,y(q) Bo" (3.6) 
k,l 

where the pair streaming or advection operator is defined a s  6 

su(q) = e x p [ -  iq- (ce -  ej)] (3.7) 

Using a matrix notation in which ~j(q) and B are represented as b2-dimen - 
sional vectors with components Nj(q), etc., and co, s(q), and 1 as b2x b-' 
matrices with elements coo.k . so.kl(q)=su(q)SikSn, and 10..,/=6ikSjl, we 
can write (3.6) as 

{1 - s(q)co } C#(q) = s(q)B (3.8) 

The formal solution to this equation is 

C~(q) = 1 s(q)B (3.9) 
1 - s(q)co 

However, there is a finite set of points q,,, corresponding to global 
invariants, where the matrix {1-s(q,,)co} has one or more zero eigen- 
values, and therefore is not invertible. Careful analysis of this problem 
leads to a quantitative prediction of finite-size effects (see Appendix B). In 
what follows we will only consider the thermodynamic limit (V--, oo), 
where the contributions from the set {q,,} are of measure zero and can be 
ignored. 

To solve the ring equation, we first note that according to (3.1)f,. 
couples only to the on-node correlations if(0). The method is therefore to 
first construct and solve coupled equations for f,. and if(0). Once these are 
known, B in (3.2) is completely determined. To achieve this we observe 
that the on-node correlations can be written in terms of Fourier com- 
ponents as 

if/j(0) = limo~ -~ E ~J(q)= Vo f ~7(q) (3.10) 
q 

Here the q summation and integration run over the first Brillouin zone of 
the reciprocal lattice Sa* and Vo denotes the volume of a unit cell on the 
lattice (e.g., Vo = I for the square and Vo-- �89 x/3 for the triangular lattice). 

~s~(q) and s(q) should not be confused with the occupation numbers s~(r, t) or s~ used in 
Section 2. 
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Therefore integrating (3.9) over q gives the following closed equation for the 
on-node correlation matrix as a function off:  

~ij(O) = ~ Rij, k1Bkl (3.11 ) 
k , I  

where Bkl in (3.2) contains terms linear in f#(0). The ring operator R is 
defined as 

dq 1 ( 
R = Vo I s(q) (3.12) 

(2rt) ~ 1 J s ( q )  f.O 

With Eqs. (3.1), (3.2), and (3.11) we now have a closed description to 
determine both f,. and ~j(0). Once the on-node correlations (and therefore 
also Bkl) have been solved from (3.11), then ~:/(q) can be calculated 
using (3.9), and the full r-dependent correlation function ~j(r)  follows by 
inverse Fourier transformation of ~j(q), 

f dq iq  - r ~ ~j(r)  = Vo J (-2~) de • ( q )  (3.13) 

In equilibrium the pre- and postcollision correlations are related by 

~ *  (r) = %(r + e , -  c~) (3.14) 

as can be seen from the first equality in (2.11). 

3.2. Numer ica l  Evaluat ion 

This section deals with the numerical evaluation of the theory of the 
previous subsection from an operational point of view. First, we describe 
how ~7(0) can be calculated for given f,. As the diagonal part of the 
on-node correlation function ~j(0) is given by (2.16), it is convenient to 
introduce an equivalent description in terms of the excess correlation 
function cr defined by 

~o - f#o (0) - f#d,,j (3.15) 

where f#d,O= gi6~ with g,-=f,.(1--f~). Combination of(3.2) and (3.11) 
yields a linear equation for the excess correlations, 

. ""k/ ...... ~,,,,,+ ~ (l -- og)kt.,,,,,~ , .... (3.16) 
k . I  m < n  m ~ n  

822/78/5-6-22 
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In deriving this equation we have used the relation if, t=  R(1 - co) ffa, which 
is only valid in the thermodynamic limit (see Appendix B). Once R is 
known, we proceed to calculate cr u for given f,. by splitting the ring equa- 
tion (3.16) into an inhomogeneous part that depends only onf~, and a part 
that is linear in ~..  Since cr ~i  is symmetric, the only independent 
elements of ~ .  are those with i<j.  These can convenientIy be taken 
together as a vector in a [�89 space, spanned by the 
possible pairs 0J) with i<j. It is therefore appropriate to interpret (3.16) 
as a vector equation, 

CG= K + MCr (3.17) 

where ff and K are [�89 vectors with components 
labeled by the pair index (tj), and M is a matrix of equal dimensionality. 
It follows from (3.16) that 

g~o. ) = ~,, R . .  0 (2.~ ~ ~ I J ,  I ~ l n  - -  i r r l l l  

. . . .  (3.18) 
Muy),(,/I : ~ ~2.2) R O. .... [I2,,,n.k t + (1 -- co),,,,.kt + (1 - co) .... /k] 

m n  

Once K and M have been calculated for given f,., the excess correlations are 
given by 

1 
ff = K (3.19) 

1 - M  

provided that det(1 - M) ~ 0. 
The simple ring approximation to the precollision on-node correlation 

function is given by cg = R[2(2,o), which is equivalent to neglecting the term 
MC-g in (3.17). It captures the essential mechanism that is responsible for the 
pair correlations occurring in LGA violating detailed balance. However, 
there are corrections due to the fact that the on-node postcollision correla- 
tions are not generated from a factorized precollision state as described by 
t2 ~:'~ but from a correlated precollision state with pair correlations given 
by ~j. These corrections are represented by the term Meg in (3.17), and 
give rise to the so-called repeated ring contribution to cr Numerical 
evaluation of Cr as given by (3.19), and comparison with the simple ring 
result cr = R~r s h o w s  that the repeated ring corrections to the simple 
ring approximation are relatively small but significant (typically 5-10%). 

In single-speed LGA, even if they violate detailed balance, lattice sym- 
metries require that the single-particle distribution function is given by f,. = 
p/b. The presence of on-node correlations ~j  does not affect f ,  since f2 (1'2) 
in(3.1) vanishes due to symmetry and ~r can be calculated in a 
straightforward manner using (3.19). 
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In multispeed LGA (e.g., with additional rest particles) that violate 
semi-detailed balance, we have in general f,. 4: p/b. In the spirit of the basic 
assumption that all correlations are small, the zeroth approximation to f~ 
is given by the stationary solution fo  of the nonlinear Boltzmann equation, 

(211"~ ~ = 0 (3.20) 

which is equivalent to setting the off-diagonal elements c-g 0. of ~y(O) equal 
to zero in (3.1). We can calculate the off-diagonal pair correlations fro in 
first approximation by evaluating (3.19) with f~ = f o ;  the diagonal correla- 

CO) _ tions are given by cBii - f ~  _ f o ) .  In first approximation, the single- 
particle distribution function f,. = fo  + f ]  can be obtained by evaluating the 

( 1 , 2 )  0 0 second term in(3.1) in first approximation, i.e., as O,-k I ( f ) C ~ t ,  and 
solving (3.1)for f~ ,  which is a small correction t o f  ~ 

We have found it efficient to use the following iterative scheme to 
obtain a self-consistent solution if ,  cr to (3.1) and (3.19): 

1. Find the stationary distribution f,. in Boltzmann approximation by 
solving (3.1) with ~ = 0 ,  i.e., g2(l'~ This can be done by 
iterating f (n  + 1 ) = f ( n )  + ~(1'~ starting from f,. = p/b, until 
(2(1'~ "" 0. 

2. Calculate ~0 from (3.19), using the values off,. found in the 
previous step. 

3. Find the stationary solution f~ of (3.1), using the values of <gu 
found in the previous step. This can again be done by iterating 
f (n + 1 ) = f ( n )  + I(f(n)), with I =  0 (2.0) + I2(2'2)cg, until I( f)  "-" O. 

4. Repeat steps 2 and 3 until the scheme has converged. 

We found that in most cases this scheme converged within a few iteration 
steps. The difference between the self-consistent value off~ and the solution 
fo  of the nonlinear Boltzmann equation (3.20) was in general rather small. 

At this point we have completed our detailed description of how to 
obtain a spatially uniform stationary solution to the coupled time evolution 
equations for f,.(t) and ~.(r, t). One can now ask whether this solution is 
unique. For single-speed models it clearly is, since for given f,. = p/b the pair 
correlations <~,7(f) are uniquely determined by (3.19). However, in the case 
of multispeed models it cannot be excluded that there are other physically 
acceptable equilibrium solutions, as the/2 matrices are nonlinear functions 
o f f =  if,.}. We can systematically search for stationary solutions by finding 

(2(l,2)tr~ the zeros of l i( f)=s176 i.kt ~J)~kl(f) as a function o f f  All 
solutions f o f /~( f )  = 0 correspond to possible equilibrium states if ,  C}. 
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3.3. Factorized Equilibrium States 

For LGA satisfying the condition of semi-detailed balance with respect 
to the (universal) Gibbs equilibrium distribution, the matrix elements of 
/212'~ given by (3.4) vanish as a consequence of(2.4) together with the 
normalization (2.2). No correlations are created by the collision step in 
equilibrium, and both before and after collision the system is described by 
the completely factorized Gibbs distribution, parametrized by the average 
occupations f~, which are given by a Fermi distribution that only depends 
on global invariants such as the average number of particles or (for fluid- 
type models) momentum per node. It follows from (3.19) that if0=0, and 
consequently ~j(r  - r') = 6 i j b ( r  , r ')f/(1 --fi)" 

As is less well known, even if condition (2.4) is violated there may still 
exist a completely factorized, but nonuniversal equilibrium state, with 
average occupations f,. that depend on the transition probabilities Aso. 
Examples can be found in ref. 16 and in Section 4.1 of this paper. The 
condition for the existence of such a nonuniversal equilibrium state is that 
a set of average occupations .f /can be found such that the corresponding 
factorized equilibrium distribution is invariant under the action of the 
collision step, 7 

F(a) = ~. As,,F(s) (3.21) 
s 

Equation (3.21) implies the relation (212'~ 0, so that again ~ . ( r -  r ' ) =  
6ucS(r, i")f, .(1-f, .) ,  but now with nonuniversalf,.. It follows directly from 
the definition (2.20) of the nonlinear Boltzmann operator that (3.21) 
implies that s176 0. In other words: if a factorized distribution F can be 
found that satisfies (3.21), it will be a stationary distribution. It should be 
stressed that in a closed (microcanonical) system, with finite L and fixed N, 
correlations ~j(r)  of r exist that are independent of the distance r, 
even in models satisfying semi-detailed balance. This can be seen as follows: 
for a semi-detailed balance model with V nodes and N =  bfV particles one 
has 

(n;(r)  n j ( r ' ) ) = f [ ( N -  l)/(b V -  1)] < f 2  

[provided of course that (r, c i )# ( r ' ,  cj)]. Consequently ff, j ( r - r ' ) =  
- f ( 1  - f ) / ( b V -  1 ) < 0, independent o f r  - r'. 

7 This is an example of the more general semi-detailed balance or Stueckelberg condition, 
discussed in footnote 5. 
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4. A P P L I C A T I O N S  

4.1. In te rac t ing  Random Walkers  

The ring kinetic theory for approximate calculation of pair correla- 
tions presented in the previous sections assumes that all higher-order 
correlations are negligible. It is important  to make a quantitative com- 
parison with computer  simulation results to establish the accuracy of the 
results obtained from a numerical evaluation of the theory. 

We first consider a model of interacting random walkers on a line. An 
isolated random walker executes a persistent random walk while jumping 
to nearest neighbor sites or resting on the same site, i.e., it has three 
allowed velocity states, c i =  { + 1 , 0 , - 1 } ,  with transition probabilities 
depending on the previous jump. 

The interaction between the walkers is strictly local and essentially 
determined by the Fermi exclusion rule for different velocity channels, i.e., 
ni(r, t ) =  {0, 1 }. The maximum number  of walkers on a site is therefore 
three. The transition probabilities from a two-particle in-state s(r) to an 
out-state a(r)  are defined in the right diagram of Fig. 1. There exists only 
a single three-particle state, which remains unchanged under interaction on 
account of the Fermi exclusion rule. 

The above model can be described conveniently in terms of a one- 
dimensional diffusive LGA, where at every node one- and two-particle 
transitions occur with probabilities defined in Fig. 1. In principle there are 
12 independent transition probabilities As,~ 5 0 .  This number  is reduced to 
six if we require that the collision rules be invariant under reflection 
(c~--* - e i ) .  In the present model the total number  of particles is conserved, 
but the total momentum is not, and there are no staggered or other 
spurious invariants. Consequently the model has only a single slow (dif- 
fusive) mode. 

To illustrate some of the analytical results of the previous sections and 
to discuss the conditions of semi-detailed balance, it is of interest to write 
out the microdynamic equation (2.6) for the occupation numbers n+(r,  t), 
no(r,t), and n_(r,t), referring, respectively, to the velocity channels 

7_ 

( X  " " O ;  O~ i "  �9 0~ '  

Fig. 1. Transition probabilities in one-dimensional model of interacting random walkers 
with mutual exclusion in the same channel (r, c~) with e~ = { - 1, 0, 1 } = { *-, � 9  ---, }. The left 
and right diagrams show transitions between states with one and two particles, respectively. 
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{c,-= + 1, 0, - 1 }. Let n*(r, t) = n;(r + c;, t + 1 ) be the postcollision occu- 
pation number; then 

.*+ = n +  + (~.no,~+ - / 3 n +  ~o)~_ + ~(n_,~+ - n+ '~_)~o  

+ (/~'no~ + - ~;n+ ~o)n_ + ~ ' (n_ ~+ - n + r~_ )no 
(4.1) 

n* =no +/~(n+~_ + n_ ff+)ffo-- ~rnori+ ti_ --~;non+n_ 

+ ~'rn+ n_ ~o + a/n+ n_ r~o --/~'(n + rT_ + n_ ~+ )no 

and a similar relation for n*_. The set ,4s~= {at, a;, c2'r, a;, /~ /~', i, 7'} 
represents the Boolean realizations ,4~,,(r, t) discussed below (2.6), with 
expectation values As~= {C~r, a;, a'r, ~ ,  /~, /~', Y, Y'}" The subscripts {r, l} 
refer to transitions to states with a particle moving to the right and to the 
left, respectively. As mentioned earlier, reflection symmetry imposes that 
a ,=c~;=a  and a ' , = ~ = a ' .  The model can be made self-dual (invariant 
under exchanging particles and holes) by choosing c~ = a',/~ =/J', and y = y'. 
However, we keep the distinction between a and c(, etc., in order to discuss 
the distinction between detailed balance with respect to the universal Gibbs 
distribution and to a nonuniversal stationary distribution, respectively. 

Consider first the mean-field or Boltzmann approximation. According 
to (2.19) the nonlinear Boltzmann equation for f,.(r, t) is obtained from 
(4.1) by replacing n,.(r, t) by f,.(r, t) and the Boolean variables ~, etc., by 
their expectation values ~, etc. In equilibrium the distribution function f;  is 
characterized by the average occupation numbers fo and f+  = f _  with 
average density p = fo  + 2f+. 

For this model the condition for semi-detailed balance (2.4) and 
detailed balance (2.5) with respect to the Gibbs distribution are equivalent, 
and given by 

=/~ ,  ~' = ,8' (4 .2)  

We recall that the stationary distribution is a Gibbs distribution if the 
phase space density depends only on the conserved quantities, so that 
f,.= �89 independent of the velocity e;. 

As explained in Section 3.4, it is also possible to have a completely fac- 
torized but nonuniversal equilibrium state, where the average occupations 
f,. depend on the transition probabilities As~. Writing out (3.20) and using 
f _  = f + ,  we obtain 

afo(1 - f +  )2 = fl(1 -fo)f+ (1 - f +  ) 

flfof+ (1 - f+  ) = ~'( 1 - fo)f2+ 
(4.3) 
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These two equations can only be satisfied simultaneously if 

c(c(' =/~/~' (4.4) 

In that case fo and f+  = f _  are related by Zo/Z + =fl/o~=o~'/fl', with z i =  
f , . /(1-f, .) .  At a given density p we can then use p = f o + 2 f +  to obtain a 
cubic equation forfo. 

If condition (4.4) is violated, there exist correlations between the 
occupation numbers of the different channels (r, ei), even in the equilibrium 
state. The critical quantity that determines whether equilibrium correla- 

(2,0) tions are nonvanishing is 12,7 (f) ,  defined in (3.4). For the present model 
we have 

(2(+2"~ = 2 /Y [/'o f+- -- c( 'f+ fo ) - 

g2(~'o~ = g2 ~'~)(f) = (c(7+ fo --/~[/of+ )f+ 
(4.5) 

If the transition probabilities satisfy detailed balance with respect to the 
Gibbs distribution (4.2) or a nonuniversal factorized distribution (4.4), then 

(2.0) __ f2,.j ( f ) -  0, and all on- and off-node correlations vanish. 
The method developed in the present paper enables one to calculate 

the on-node quantities {f,.,c#,7} numerically. The off-node correlations 
%(r)  can then be constructed with the help of (3.9) and (3.13). The 
postcollision correlations f#* (r) are then given by (3.14). Note that for the 
three-bit model if*_+ = ~ j ( 2 )  and f#*+=f#o+(1), where r = l  and r = 2  
denote the nearest- and next-nearest-neighbor sites. The relative impor- 
tance of the pre- and postcollision pair correlations ~7 and ~*  is best 
measured when they are normalized by the single-channel fluctuations 
gi = <(6ni) 2 >, yielding the covariances 8 

~J Cov*(i , j )  - if* (4.6) Coy(i, j )  = (gi gj)U2' (gi gj)U2 

Using the method of Section 3.2, we have calculated these quantities for 
different choices of reduced density f =  p/3, lattice size L, and transition 
probabilities c(,/3, 7 (for self-dual models only), and compared the theoreti- 
cal results with computer simulations. 

In Table I a comparison is made between the different levels of 
sophistication at which the ring kinetic theory can be evaluated numerically: 
(i) either using the solution f ~ of the nonlinear Boltzmann equation (3.20), 
or using the self-consistent solution fi  obtained with the iterative scheme of 

s In ref. 16 the correlations ~j were normalized by f,.~ rather than by (gigj//z as is done in 
this paper. Only with the latter choice is the self-dual symmetry preserved. 
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Fig. 2. Comparison of computer simulation results (symbols with error bars) and self-consis- 
tent ring kinetic theory (lines) for the model of Fig. 1. On-node correlations, indicated as 
covariances, are plotted (a) versus system size L, for transition probabilities c~ = 0.4, /3 = 0.5, 
and 7=0 and density f =  0.5; (b) versus density f, for L= 128, ~ =0.5, /3=0.4, and "f=0; (c) 
versus transition probability a, for f=0.5,  L= 128, //=0.33, and 7 =0.5. Note the vanishing 
of correlations when ~ =/3 (detailed balance). 

Sect ion 3.2, and  (ii) ei ther us ing  the s imple  r ing a p p r o x i m a t i o n  or  inc lud ing  
repeated r ing con t r i b u t i o n s  as well. F o r  reference we have inc luded  
the values of  the postcol l is ion cor re la t ions  ca lcula ted  in ref. 16. They  are 
equ iva len t  to the simplest  a p p r o x i m a t i o n  (i.e., B o l t z m a n n f  ~ s imple ring).  
The  c o m p a r i s o n  with s imu la t ion  da ta  shows that  the mos t  sophis t ica ted  
me thod  (i.e., self-consistent,  repeated r ing)  is indeed the mos t  accurate.  
F o r  an  accura te  p red ic ion  of pair  cor re la t ions  it appears  to be more  
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Fig. 2. (Continued) 

important  to include repeated ring effects than to take the deviation of the 
self-consistent f,. from f.o into account. 

In Figure 2a values of the pre- and postcollision on-node correlations, 
obtained both from the numerical evaluation of the theory (lines) and from 
computer  simulations (symbols with error bars), are plotted as a function 
of the system size L. For  small values of L there are strong finite-size 
effects, which are predicted quantitatively by the theory of Appendix B. 
Figure 2b shows the typical dependence on the reduced density f =  p/3; the 
correlation functions are symmetric a round f =  0.5, as a consequence of the 
imposed self-duality. In Fig. 2c the on-node correlations are plotted as a 
function of~, for fixed fl = 0.33 and ~ = 0.5 at reduced density f =  0.5 and 

Table I. Comparison of Methods for Calculating Static Pair Correlations in 
Equilibrium for the One-Dimensional 3-Bit  Model Defined in Fig. 1" 

Method fo f• Covo+ Cov_ + C o v * +  Cov*_+ 

Theory of ref. 16 0.2578 0.3211 0 0 + 0 . 1 3 2 4  -0.2480 
Boltzmann fo 

Simple ring 0.2578 0.3211 +0.0738 -0.0219 +0.1324 -0.2480 
Repeated ring 0.2578 0.3211 +0.0671 -0.0200 +0.1597 -0.1949 

Self-consistent~ " 
Simple ring 0.2620 0.3190 +0.0727 -0.0225 +0.1323 -0.2483 
Repeated ring 0.2617 0.3192 +0.0665 -0.0206 +0.1593 -0.1956 

Simulation 0.2623 0.3200 +0.0654 -0.0218 +0.1584 -0.1970 

a All data refer to collision parameters ~ =0.5, fl = 0.2, and ~,= 0.5, reduced density f =  0.3, 
and system size L = 256. 
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L =  128. Note  that when ct = f l  all correlations vanish: the model satisfies 
(semi-) detailed balance. 

Since there is no fundamental  difference between on- and off-node 
correlations, and since in addition the L dependence of the correlations is 
well predicted by the theory, we expect that our theory is capable of giving 
good predictions for off-node correlations ~j(r )  as well. This expectation is 
justified by Fig. 3, where for fixed f =  0.5, L = 128, and two different sets of 
transition probabilities, the density-density correlation function C~(r)= 
Z,j ~j( r )  is plotted versus r. Note  that C~(r) is negative at large r, due to the 
finite-size effects referred to in Section 3.3. 
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Fig. 3. Off-node density~tensity correlation function G(r)=~,oG~(r) plotted versusr, for 
f=0.5, L=256, and two different choices of transition probabilities: (a) ct=0.1, /~=0.5, 
?=0.5 and (b) ct =0.5, /3=0.1, 7 =0.5. Simulations (symbols with error bars) compared with 
theoretical values (solid line connecting points r= 0, 1, 2,...). 
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To study how the system approaches  equi l ibr ium in a spat ial ly 
uniform nonequi l ibr ium state we have solved the t ime-dependent  evolut ion 
equat ions (2.21) and (2.22). F i g u r e 4 a  shows how the typical  re laxat ion 
time increases with L. Note  that  for t < L/2 the evolut ion is independent  
of L, which can be explained by the observat ion  that  the shortest  time 
in which two opposi te  moving particles can meet through the periodic 
boundary  condi t ions  is t = L/2; at earl ier  times there is no dist inct ion 
between a finite and an infinite system. When  L = 1024 the system still has 
not reached equi l ibr ium after 1000 time steps. 
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Fig. 4. Time dependence of on-node correlations, calculated using ring kinetic equation (no 
simulations), with f=0.5  and the transition probabilities of Fig. 2a: (a) short-time behavior 
for various L; (b) algebraic long-time behavior, .,IGu~ t-~/2, for L = 4096. 
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For long times the approach to equilibrium is algebraic, 

~j(O, t ) - ~ j ( O ,  o o ) -  zJ~j(t),-~ t -= (4.7) 

with an exponent c~ that depends on the dimensionality and the type of 
collisional invariants of the mode. Figure 4b shows that c~ = 1/2 in the case 
of the interacting random walkers, where the number of particles is the 
only collisional invariant. In a separate publication we will analyze the 
exponents and amplitudes for these algebraic tails in detail. 

4.2. Two-Dimensional Fluid-Type Model 

As a second application we consider a stochastic modif ication of the 
model introduced by Frisch et al. ~171 that violates detailed balance. In this 
two-dimensional model, which was first introduced in ref. 16, particles 
move on a triangular lattice. Each node may contain a rest particle and up 
to six moving particles. The transition matrix A.~ introduced in Section 2 
may be asymmetric for transitions between a state with and one without a 
rest particle. The general model contains 20 independent matrix elements 
A,,,  as illustrated in Fig. 5. 

- -  (2,0) In ref. 16 we obtained c~0.=0 and ~*- , . (2  u as simple estimates for 
the pre- and postcollision correlations, respectively, but a theory for non- 
vanishing precollision correlations in equilibrium was entirely lacking. The 
present paper provides the missing theory. Here we present the application 
of the present theory to this model, for a particular choice of collision 

1).5 / 
0.2 

o._< ',o.4 

/ 

, 

0.q >.4 

• >-, 

/-. 
Fig, 5. Definition of the two-dimensional fluid-type LGA discussed in Section 4.2. Some 
transitions are not shown, for clarity; they can easily be reconstructed by noting that the 
collision rules must be invariant under rotations, e.g., to the transition in the upper left corner 
the clockwise rotation of the left state must be added. 
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Fig. 6. Test of ring kinetic theory for the model of ref. 16, using the transition probabilities 
of set # 13. Simulation data for L = 64 (symbols with error bars), compared with old theory 
for on-node postcollision correlations of ref. 16 (dotted line), and with new ring kinetic theory 
for the on-node precollision (dashed line) and postcollision (solid line) correlations. 

parameters  shown in Fig. 5 (in ref. 16 this choice of collision parameters  
was referred to as "set # 13"). F o r  this pa ramete r  set the correlat ions reach 
a s ta t ionary  value after a few hundred  time steps. 

The theoret ical  predict ions  for the corre la t ion functions have been 
compared  with compute r  s imulat ions of high statistical accuracy, taking 
several hours of C P U  time on a Sparc 10 works ta t ion  for each da ta  point. 
In basic equi l ibr ium, where the total  momen tum P vanishes, the only inde- 
pendent  elements of C~ are ( / j ) =  {(01), (12), (13), (14)}; all other  elements 
are related to these four by latt ice symmetries.  As the model  defined in 
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Fig. 6. (Continued 

Fig. 5 is self-dual, the correlations are symmetric around f=p/7=0.5. 
Figure 6 shows the simulation results (symbols) compared with the ring 
kinetic theory for precollision (solid line) and postcollision (dashed line) 
correlations. From this figure it is clear that the self-consistent ring kinetic 
theory agrees very well with the simulations. For comparison we also 
plotted the old theory for the postcollision correlations of ref. 16 (dotted 
line). 

5. C O N C L U S I O N  

In the present paper a theory has been presented to calculate distri- 
bution and correlation functions in the stationary state of lattice gas 
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automata (LGA) violating semi-detailed balance. The theory of standard 
LGA satisfying semi-detailed balance is recovered as a special case. 

The ring operator R defined in (3.12) that is used to calculate equi- 
librium correlations is identical to the one introduced for calculating long- 
time tails of time correlation functions ~4"9~ and corrections to Boltzmann 
transport coefficients c5~ in LGA satisfying semi-detailed balance. One can 
show that linearization of the theory in this paper around the Gibbsian 
equilibrium state for standard LGA, together with neglect of repeated ring 
contributions, reproduces the results of refs. 4, 5, and 9. 

In Section 3 we discussed an iterative scheme for finding a self- 
consistent solution {f,., cgu}, starting from the solution of the nonlinear 
Boltzmann equation (where ~0.=0). Even though the ring equation 
uniquely determines cg U for given f,., it is highly nonlinear in f~; therefore it 
can in principle not be excluded that more than one spatially uniform 
stationary state exists. 

To test our theory we have applied it to two different LGA, both 
violating semi-detailed balance. The theory presented in this paper shows 
excellent agreement with the results of computer simulations, both for a 
one-dimensional diffusive LGA and for a two-dimensional fluid-type LGA. 
Moreover, the theory accounts very well for finite-size effects. 

As t--* oo a stationary state is approached. Due to the existence of 
local conservation laws the approach to this stationary state is algebraic, 
~ t - %  with an exponent ct that depends on the dimensionality and on the 
type of conservation laws. There is an intimate connection between the 
algebraic tails in the approach toward the correlated equilibrium state 
mentioned here and the well-known long-time tails in the decay of the 
velocity autocorrelation function, t23'-'4~ 

It would be of interest to apply the method of this paper to cellular 
automaton models for chemical reactions t25~ or traffic flow, t26~ where static 
correlations may play an important role. 

It is appropriate to give some comments on the validity of the 
generalized Boltzmann equation and ring equation derived in this paper. In 
real fluids the validity of the cluster expansion is restricted to dilute 
systems, where the density acts as a small expansion parameter. Here there 
is no such small parameter and the approximations are less controlled. To 
understand the great success of the present mean-field theory, it is useful to 
compare the lattice Boltzmann equation with the revised Enskog theory for 
hard-sphere fluidsJ 27~ Both theories describe nonequilibrium phenomena 
reasonably well over the whole density range. The reason for this seems to 
be that the collision term for the revised Enskog theory (resp. lattice 
Boltzmann equation) contains the static correlations imposed by the hard- 
core exclusion (resp. Fermi exclusion), which are the origin for the strong 
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density dependence of the theory. The present ring kinetic theory equation 
also contains--through the expansion coefficients 12--all static correlations 
between colliding particles imposed by the Fermi exclusion. This might 
explain the success in predicting the density dependence of the correlation 
functions. 

A P P E N D I X  A. CLUSTER E X P A N S I O N  

In this appendix the cluster expansion of the hierarchy equations is 
derived. We start by substituting n,. = f~ + 5n~, resp. s; = f~ + 5s~ into (2.12) 
and obtain the identity 

( f , . + 6 n y J ( l - f j - 6 n j ) ' - " = f ; ' ( 1 - f j ) ' - ' J [ l  + 6sj6ni] (A.1) 
gj i 

with gj--f j (1 - f j ) .  With the help of this identity we can expand the single- 
node distribution p(s, r, t) defined in (2.9), 

{ ~ 5sk(r't) bs ' ( r ' t )Gk , ( r , r , t )+ . . . }  (A.2) p(s, r, t) = F(s, r, t) 1 + t gk( r, t) gl(r, t) 

where F(s, r, t) is the factorized single-node distribution function (2.18). 
Similarly we can expand the two-node distribution function in (2.9) as 

p(2)(S, r, S', r', t)-- p(s, r, t) p(s', r', t) 

=F(s,r, t)F(s, ,r , , t)x- ,  . . . .  6sk(r) 6st(r' ) gk(r, t) g/(r', t) Gkt(r' r ,  t) + ... (A.3) 

Insertion of (A.2) in (2.10) yields 

f,.(r +ci ,  t +  1 ) - f i ( r ,  t ) ~  I211'~ y'  o(l.2)tc~ Gkt(r, r, t) (A.4) - -  ~ i ,  k l  ~ , J I  

k < l  

The expansion coefficients/2 are given by 

t211'~ = Z (cri--si) A~,,F(s) 
s a  

12~}")(f) = ~ (a , -  s,) A,,,r(s) 5sj (A.5) 
s,r gj 

~ ( 1 , 2 )  ( C~ - -  ~.kl , . , ,  - ~ (or , -  s,) AsoF(s) ~s, 5s~ 
s~ gk g/ 
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where k < l  and F(s)=F(s, r, t). Moreover, 5 a i = a i - f j .  Note that the O's 
depend on r and t through f(r, t). They are generated by the Taylor 
expansion of the nonlinear Boltzmann collision operator, g21t,~ - ~f), in 
powers of 5f, 

(,.m (,.o, + '}" I2 ~' ' ' ( f )  5fj Oi ( f  q-af)=[2i ( f )  
J 

+ �89 ~ f2~}'2)(f) afk afl+ ... (A.6) 
k , I  

To derive an equation of motion for the precollision correlation function 
Go.(r, r', t) we start from its definition (2.15), written as 

G,~(r + ei, r ' +  ej, t +  1) 
( 2 )  = f o  ( r+e~ , r  + r  

- f , . ( r  + e,, t +  1)fj(r '  +ej ,  t +  1) (A.7) 

and use (2.10) together with (2.11) to obtain 

G~j(r + e,., r' + cj, t +  1) 

= [ 1 - 6 ( r , r ' ) ]  ~" Z a,ajAs~A.,..,,, 
art s 'a '  

x {pI2)(s, r, s', r', t ) -  p(s, r, t)p(s', r', t)} 

r') t ~  a,ajAs,,p(s, r, + 6(r, l) 
k so" 

aia~ A,,,As,,,, p(s, r, t ) p(s', r, t) t Z (A.8) 
$ a  s 'o- '  ) 

Next one verifies that al ( l=i , j )  and a.~ can be replaced by 6a~= 
a l - f t ( r ,  t) and 6aj = a~ - f j ( r ' ,  t) respectively. This leads to the form 

Go.(r+c~,r'+ej, t+ l )=K~j ( r , r ' , t )+a(r , r ' )Bo( r , t )  (A.9) 

with 

K0.(r, r', t ) = ~  ~ 6aifajA~.o.As.,,, 
so" s 'o. '  

x{ f f2~(s , r , s ' , r ' , t ) - -p(s , r , t )p(s ' , r ' , t ) }  (A.10) 

and the on-node source term, 

B,~ (r, t )=  B~!l(r, t) + B~r (r, t) + Biy(31 (r, t) (A.11) 

822/78/5-6-23 
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consisting of three parts, 

B~))(r, t ) = ~ '  6o'i6aj Asap(s  , r, t) 

= Go.(r, r, t) + ~. (6ai 6 a j -  3si 6sj) As,  p(s) 

(21 Bij (r, t) = - - ~  ~ 6a i 6aj A~As ,  o, 
SG s'~" 

x [p~2)(s, r, s', r, t ) - p ( s ,  r, t )p(s ' ,  r, t)] 

(3) B o. ( r , t ) = - ~ & r ~ & a j A ~ A ~ , ~ , p ( s , r , t ) p ( s ' , r , t )  (A.12) 
sG s 'a '  

Inspection of (A.8) and (A.12) shows that the last two terms in (A.8) repre- 
sent the postcollision on-node correlations, 

G*(r, r, t )=  B(~)(r, t )+  BC31(r, t) (A.13) 

whereas BtZl(r, t) represents a correction coming from the off-node correla- 
tions. The cluster expansion of K o. follows by inserting (A.3) into (A.10) 
with the result 

K~(r, r', t) ~- ~ O)ij. k l ( f , f '  ) Gkl(r, r', t) (A.14) 
k , I  

where the pair collision operator is defined as 

a~v.kt(f,f') = Z 6a, aaJ A, ,A, '~ 'F(s)  F(s')  askfs't 
s~.,.',' gk g~ 

= {6,.k + f2 ~ '  + [ 2 " '  l ik l)(f( r, t))}{&jt jt )(f(r', t))} (A.15) 

In the last line of (A.15) relation (A.5) has been used. For the three terms 
in Bo(r, t) we obtain 

B,~')(r, t ) "  Go(r, r, t)+/2,~z'~ ~ ol2"z)tt"~ "'/j. ht ~ J  Gh/( r, r, t) 
h < l  

(2) B,7 (r, t) --~ --Y' o)ij.kl(f, f )  Gh/(r, r, t) 
k , l  

(3) B o. (r, t) " - - (2~"~ g-2JJ'~ (A.16) 

- ~'. {[211'~ O l l ' z ) t c ~ - ~ 1 7 6  c~t  Gkt(r, r, t) j ,  hi  ~ J )  ~ ~ u j  ~ , J ]  i, hi  J !  J 
k < l  
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We have introduced two more expansion coefficients, where k < 1, 

f2lz, ol ( f )  = ~ (6ai 6aj--  6si 6s i) A~F( s )  ij 
s~ 

Q e z ,  2)t ~-~ - -  (A.17) ij. kl ' .11 = ~ ((~(7 i &tTj - -  &S i &Sj) A s a F ( s  ) &sk &SI 
~ gk gt 

A P P E N D I X  B. F INITE-SIZE EFFECTS 

Consider the formal solution of the ring equation (3.8), 
1 

~(q) s(q) B (B.1) 
1 -- s(q)co 

Using a biorthogonal set of right and left eigenvectors, :~(q) and z~(q), 
satisfying 

(z~(q) I )~,(q)) =y'.  ()~.ij(q)I)~,. ij(q))--6=, 
ij 

and eigenvalues 2~(q) of the two-part ic le propagator  s(q)co, we can write 
( 1 -  s(q)o~)-~ as a spectral decomposit ion, 

1 -  s(q)~ i j ,  k ,  = 1 - 2=(q) Z~' k'(q) (B.2) 

provided that 2=(q):~ 1. There is, however, a compl icat ion if, for one or 
more reciprocal lattice vectors q,, belonging to a set {q,,}, there are eigen- 
modes a for which 2~(q,,)= 1. The operator (1-s(q , , )co)  then has a null 
space J~,,,, spanned by the eigenvectors for which 2~(q,,)= 1. The set of 
points {q,,} contains the origin, corresponding to the standard conserva- 
tion laws, and posssibly the centers of the facets of the Wigner-Seitz cell, 
corresponding to the staggered invariants. ~28~ 

Both from a theoretical point of view and for the purpose of numeri- 
cally evaluating (B.2) it is important to recognize that the two-particle 
propagator [s(q)co]ij ' k/= Fik (q)Fit(--q) can be written as the product of 
two single-particle propagators, 

F~k(q) = e --iq .e i{6i  k .~ ~ I1 ,  1)} (B.3) 

with biorthogonal right and left eigenvectors tp.(q) and ~b.(q), and eigen- 
values exp[z.(q)]. Each value of ct = #v in (B.2) corresponds to a product 
mode with Z~,0(q)= ~. , i(q)~, , j(q),  Z~,ij(q) = ~'~.~(q)~'v.j(q), and 2~(q)= 
exp[z~(q) + zv(q)]. The slow modes ~b~.~(q) of the Boltzmann propagator 
F~k(q) are related to the local conservation laws and have z~(0)=0. They 
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correspond to the zero left eigenvectors t~s(0 ) of the linearized Boltzmann 
operator I2"" t), which are linear combinations of the collisional invariants 
ai. Products of slow modes at q = 0 give rise to 2, = exp[zu(0)+ z,.(0)] = 1. 
Staggered modes have zu(q,  ) = zv(q,)  = in. 

We can now formulate a necessary solubility condition, which requires 
that the inhomogeneous term in (3.8) be orthogonal to the null space, i.e,, 

(x~(q,,) I s ( q , ) B ) = 0  (B.4) 

for the modes (~, n) that have 2,(q,,)= 1. It can be verified that this condi- 
tion is indeed satisfied as a consequence of (2.25), i.e., the local conserva- 
tion laws, since both for the standard conserved quantities ~ and for the 
staggered invariants we have s(q, )  = 1. 

After establishing that (3.8) is soluble, we observe that its solution is 
not unique in the set of points {q,}, since we may add an arbitrary linear 
combination of right null eigenvectors ~(q,)  to a special solution of (B.1). 
Using s ( q , ) =  1, we have 

1 
e0-(q,) = ~ :~,.,j(q,,) (x , (q)  l B ) +  ~ g,,,,Z,.u(q-) (B.5) 

=r 1 - 2 , ( q , , )  ~.~- 

It turns out that the coefficients ~,, are completely determined by the 
covariance of the fluctuations of the (standard and spurious) global 
invariants. For instance, for the standard invariants ~r .... } 
associated with q, ,=0, the eigenmode z,(O)=a~a~, is a product of 
collisional invariants. Using the biorthogonality relation (X, [;~a) = 3,a we 
obtain from (B.5) 

1 
g,,,, = <a~au I ~o(0) > = ~ ~ aj.. ia,,.jp~j(r) = -~ <3~.  6 ~  > (B.6) 

r ij 

The last equality follows from (2.15). In this paper we only consider the 
case where the initial ensemble is prepared microcanonically, i.e., with all 
global invariants fixed, so that all g,,, = 0. 

Using the method of Section 3.1 we can again derive a linear equation 
of the form (3.17) for the excess on-node correlations cg,y, defined by (3.15). 
The ring operator is now given by 

1 1 1 1 
R = - ~  ~ l _ s ( q ) c o s ( q ) + - ~  }-', 2,(q,,) x~(q,,) (B.7) 

qr {qn} n ~r 1 - 2,(q,,) 

Note that in the thermodynamic limit the contribution of the second term 
on the right-hand side is (9(l/V), and therefore (B.7) reduces to (3.12). 
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For finite systems c~a4: R ( I -  o9)ffa, and as a consequence fr contributes 
to the excess correlations ~ .  These are given by (3.19), with M given by 
(3.18) as before, but with K =  RI2 (2' o)+ j containing a finite-size correction 
term, J =  R( I -o9)  cSd- c~ d, which is explicitly given by 

1 
J(o)= - ~  ~" ~=,u(q,,)(~=(q,,)l~d~) (B.8) 

In deriving this equality we have used the fact that s(q)f#a=ff a, since 
s~(q) = 1. The presence of this J term, together with the fact that expression 
(B.7) for the ring operator must be used instead of (3.12), accounts in a 
quantitative manner for finite-size effects of 6(1/V). 
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